Skip to main content

Interfacing Water Flow Sensor with Raspberry Pi 3 ๐Ÿšฟ

Interfacing Water Flow Sensor with Raspberry Pi 3 ๐Ÿšฟ

๐ŸŽฏ Objective

To measure the flow rate of water using a Water Flow Sensor (YF-S201) and Raspberry Pi 3. Useful in smart irrigation and water management systems.

๐Ÿงฐ Components Required

ComponentQuantity
Raspberry Pi 31
YF-S201 Water Flow Sensor1
10K Pull-down Resistor1
Jumper WiresAs required
Breadboard1

⚡ Circuit Connections

Sensor PinConnect To
Red (VCC)5V (Raspberry Pi)
Black (GND)GND (Raspberry Pi)
Yellow (Pulse Out)GPIO18 (Pin 12) with pull-down resistor

๐Ÿง  Python Code

import RPi.GPIO as GPIO
import time

FLOW_SENSOR = 18
pulse_count = 0

def countPulse(channel):
    global pulse_count
    pulse_count += 1

GPIO.setmode(GPIO.BCM)
GPIO.setup(FLOW_SENSOR, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)
GPIO.add_event_detect(FLOW_SENSOR, GPIO.FALLING, callback=countPulse)

try:
    while True:
        pulse_count = 0
        time.sleep(1)
        flow_rate = (pulse_count / 7.5)  # for YF-S201
        print(f"๐Ÿšฟ Flow Rate: {flow_rate:.2f} L/min")

except KeyboardInterrupt:
    GPIO.cleanup()

๐Ÿ“Š Output

  • Shows live flow rate of water in liters per minute.
  • Pulse count is converted to flow using the sensor's spec.

๐Ÿ’ก Applications

  • Smart irrigation systems
  • Water conservation projects
  • Leak detection and usage monitoring

๐ŸŽฏ เค‰เคฆ्เคฆिเคท्เคŸ

เคตॉเคŸเคฐ เคซ्เคฒो เคธेเคจ्เคธเคฐ เคตाเคชเคฐूเคจ เคชाเคฃ्เคฏाเคšा เคช्เคฐเคตाเคน เคฆเคฐ เคฎोเคœเคฃे เค†เคฃि Raspberry Pi 3 เคตเคฐ เคค्เคฏाเคšे เคฎाเคชเคจ เค•เคฐเคฃे.

๐Ÿงฐ เคฒाเค—เคฃाเคฐे เคธाเคนिเคค्เคฏ

เค˜เคŸเค•เคธंเค–्เคฏा
Raspberry Pi 31
YF-S201 เคตॉเคŸเคฐ เคซ्เคฒो เคธेเคจ्เคธเคฐ1
10K เคชुเคฒ-เคกाเคŠเคจ เคฐेเคिเคธ्เคŸเคฐ1
เคœंเคชเคฐ เคตाเคฏเคฐ्เคธเค—เคฐเคœेเคจुเคธाเคฐ
เคฌ्เคฐेเคกเคฌोเคฐ्เคก1

⚡ เคธเคฐ्เค•िเคŸ เค•เคจेเค•्เคถเคจ

เคธेเคจ्เคธเคฐ เคชिเคจเคœोเคกเคฃी
Red (VCC)5V (Raspberry Pi)
Black (GND)GND (Raspberry Pi)
Yellow (Pulse Out)GPIO18 (Pin 12) เคชुเคฒ-เคกाเคŠเคจ เคฐेเคिเคธ्เคŸเคฐเคธเคน

๐Ÿง  เคชाเค‡เคฅเคจ เค•ोเคก

import RPi.GPIO as GPIO
import time

FLOW_SENSOR = 18
pulse_count = 0

def countPulse(channel):
    global pulse_count
    pulse_count += 1

GPIO.setmode(GPIO.BCM)
GPIO.setup(FLOW_SENSOR, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)
GPIO.add_event_detect(FLOW_SENSOR, GPIO.FALLING, callback=countPulse)

try:
    while True:
        pulse_count = 0
        time.sleep(1)
        flow_rate = (pulse_count / 7.5)
        print(f"๐Ÿšฟ เคช्เคฐเคตाเคน เคฆเคฐ: {flow_rate:.2f} เคฒी./เคฎिเคจिเคŸ")

except KeyboardInterrupt:
    GPIO.cleanup()

๐Ÿ“Š เค†เค‰เคŸเคชुเคŸ

  • เคชाเคฃ्เคฏाเคšा เคช्เคฐเคตाเคน เคฆเคฐ เคฒीเคŸเคฐ/เคฎिเคจिเคŸเคฎเคง्เคฏे เคฆเคฐ्เคถเคตเคคो.
  • เคชเคฒ्เคธ เค•ाเค‰ंเคŸ เคตाเคชเคฐूเคจ เคฆเคฐाเคšे เคฐूเคชांเคคเคฐเคฃ เคนोเคคे.

๐Ÿ’ก เค‰เคชเคฏोเค—

  • เคธ्เคฎाเคฐ्เคŸ เคธिंเคšเคจ เคฏंเคค्เคฐเคฃा
  • เคชाเคฃी เคฌเคšเคคीเคธाเค ी เคช्เคฐเคฃाเคฒी
  • เคฒीเค• เคกिเคŸेเค•्เคถเคจ เคต เคชाเคฃी เคตाเคชเคฐ เคŸ्เคฐॅเค•िंเค—

Comments

Popular posts from this blog

IOT : GARDEN WATER SPRINKLER SYSTEM

IoT projects have gained immense popularity due to their ability to leverage the power of interconnected devices and data to create innovative solutions across various domains. IoT projects involve integrating sensors, actuators, and communication technologies to enable the seamless exchange of data between physical devices and the internet. These projects range from simple DIY experiments to complex industrial applications, each offering unique opportunities to transform our lives and improve efficiency. Whether it's creating a smart home automation system, monitoring environmental conditions, optimizing energy usage, or developing intelligent transportation systems, applications of IoT open up a world of possibilities for innovation and connectivity. By harnessing the potential of IoT, we can build intelligent and interconnected systems that revolutionize industries, enhance daily life, and pave the way for a more efficient and sustainable future. In this project we will be using...

TOUCH PLATE BASED DOOR BELL

Title:  Touch plate based door bell  Circuit:  Components: IC 555 Resistors: 1 M, 100k, 330 ohms Transistor: BC547  PN2222A Capacitor: 10n 1 Copper plate : as touch plate. A 6v battery An LED / Ic UM66 Description: This is the simple circuit for touch plate based security system. In this project what basically done is, circuit detects stray voltages produced by mains voltage and electrostatic built  up in the room.If sufficient static voltage is detected by the plate then chip will charge up. Transistor BC 547 or PN2222A is used basically to increase the sensitivity.In place of led just connect IC um 66(melody IC). Applications: In homes, of course. This can be specially used in places like hospitals, when patients need to call doctor by himself.

POWER BI - THE ARCHITECTURE

Power BI Architecture: A Comprehensive Guide to Building Effective Data Analytics Solutions     Understanding Power BI Architecture: Power BI's architecture comprises four main components, each playing a pivotal role in the data analytics process: Data Sources:   Power BI connects to a wide range of data sources, including databases, cloud services, Excel files, web services, and more. This versatility enables organizations to consolidate their data from various systems into a single dashboard. Data Transformation:   Once the data is sourced, it undergoes transformation and cleaning processes to make it suitable for analysis. Power BI's Power Query Editor provides a user-friendly interface to manipulate, filter, and shape data according to specific requirements. Data Model:   The heart of Power BI's architecture lies in its data model, whic...